Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 13(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34836092

RESUMO

BACKGROUND: Human milk oligosaccharide supplementation safely modulates fecal bifidobacteria abundance and holds the potential to manage symptoms in irritable bowel syndrome (IBS). Here, we aimed to determine the role of a 4:1 mix of 2'-O-fucosyllactose and lacto-N-neotetraose (2'FL/LNnT) on the modulation of the gut microbiota composition and host mucosal response, as well as the link between the bifidobacteria abundance and metabolite modulation, in IBS patients. METHODS: Biological samples were collected from IBS patients (n = 58) at baseline and week 4 post-supplementation with placebo, 5 g or 10 g doses of 2'FL/LNnT. The gut microbiota composition, metabolite profiles and expression of genes related to host mucosal response were determined. RESULTS: Moderate changes in fecal, but not mucosal, microbial composition (ß-diversity) was observed during the intervention with higher dissimilarity observed within individuals receiving 10g 2'FL/LNnT compared to placebo. Both fecal and mucosal Bifidobacterium spp. increased after 2'FL/LNnT intake, with increased proportions of Bifidobacterium adolescentis and Bifidobacterium longum. Moreover, the intervention modulated the fecal and plasma metabolite profiles, but not the urine metabolite profile or the host mucosal response. Changes in the metabolite profiles were associated to changes in bifidobacteria abundance. CONCLUSION: Supplementation with 2'FL/LNnT modulated the gut microbiota, fecal and plasma metabolite profiles, but not the host mucosal response in IBS. Furthermore, the bifidogenic effect was associated with metabolite modulation. Overall, these findings support the assertion that 2'FL/LNnT supplementation modulate the intestinal microenvironment of patients with IBS, potentially related to health.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Síndrome do Intestino Irritável/tratamento farmacológico , Leite Humano/química , Oligossacarídeos/farmacologia , Adolescente , Adulto , Idoso , Bifidobacterium/efeitos dos fármacos , Método Duplo-Cego , Fezes/microbiologia , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Síndrome do Intestino Irritável/microbiologia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Trissacarídeos/farmacologia , Adulto Jovem
2.
Neurogastroenterol Motil ; 32(10): e13920, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32536023

RESUMO

OBJECTIVES: Human milk oligosaccharides safely and beneficially impact bifidobacteria abundance in healthy adults, while their effects in patients with irritable bowel syndrome (IBS) are unknown. Hence, we aimed to determine the dose of 4:1 mix of 2'-O-fucosyllactose and Lacto-N-neotetraose (2'FL/LNnT) that increases fecal bifidobacteria abundance without aggravating overall gastrointestinal symptoms in IBS patients in a randomized, double-blind, controlled study. Additionally, the impact of 2'FL/LNnT on the fecal bacterial profile was assessed. METHODS: Irritable bowel syndrome patients diagnosed according to the Rome IV criteria received placebo (glucose), or 5 g or 10 g 2'FL/LNnT for 4 weeks followed by a four-week follow-up period. Gastrointestinal Symptom Rating Scale-IBS was used to assess gastrointestinal symptom severity; fecal microbiota composition was evaluated by GA-map™ Dysbiosis Test. RESULTS: Of the included 60 patients, two (one placebo and one 10 g) discontinued prematurely. Fecal bifidobacteria abundance was increased at week 4, but not at week 8, in the 10 g group compared to the other groups. Severity of overall or individual gastrointestinal symptoms did not differ between the groups at week 4 or 8, and no symptom deterioration was seen in any of the groups. The 10 g dose influenced overall fecal microbiota composition, and responders-defined as bifidobacteria increase ≥50%-could be discriminated from non-responders based on fecal microbiota modulation. CONCLUSIONS: The 10 g dose of 2'FL/LNnT induced an increase in the beneficial Bifidobacterium spp. without aggravating gastrointestinal symptoms in patients with IBS. This approach may be worthwhile to modulate gut microbiota of IBS patients toward a healthier profile.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/fisiologia , Síndrome do Intestino Irritável/dietoterapia , Síndrome do Intestino Irritável/diagnóstico , Leite Humano , Oligossacarídeos/administração & dosagem , Adulto , Idoso , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Br J Nutr ; 116(8): 1356-1368, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27719686

RESUMO

The gut microbiota has been established as an important player influencing many aspects of human physiology. Breast milk, the first diet for an infant, contains human milk oligosaccharides (HMO) that shape the infant's gut microbiota by selectively stimulating the growth of specific bacteria, especially bifidobacteria. In addition to their bifidogenic activity, the ability of HMO to modulate immune function and the gut barrier makes them prime candidates to restore a beneficial microbiota in dysbiotic adults and provide health benefits. We conducted a parallel, double-blind, randomised, placebo-controlled, HMO-supplementation study in 100 healthy, adult volunteers, consuming chemically produced 2'-O-fucosyllactose (2'FL) and/or lacto-N-neotetraose (LNnT) at various daily doses and mixes or placebo for 2 weeks. All participants completed the study without premature discontinuation. Supplementation of 2'FL and LNnT at daily doses up to 20 g was shown to be safe and well tolerated, as assessed using the gastrointestinal symptoms rating scale. 16S rRNA sequencing analysis showed that HMO supplementation specifically modified the adult gut microbiota with the primary impact being substantial increases in relative abundance of Actinobacteria and Bifidobacterium in particular and a reduction in relative abundance of Firmicutes and Proteobacteria. This study provides the first set of data on safety, tolerance and impact of HMO on the adult gut microbiota. Collectively, the results from this study show that supplementing the diet with HMO is a valuable strategy to shape the human gut microbiota and specifically promote the growth of beneficial bifidobacteria.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Bifidobacterium/crescimento & desenvolvimento , Disbiose/prevenção & controle , Microbioma Gastrointestinal , Oligossacarídeos/uso terapêutico , Prebióticos , Trissacarídeos/uso terapêutico , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Adulto , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Biomarcadores/análise , Biomarcadores/sangue , Dinamarca , Método Duplo-Cego , Disbiose/sangue , Disbiose/metabolismo , Disbiose/microbiologia , Fezes/química , Fezes/microbiologia , Feminino , Firmicutes/classificação , Firmicutes/crescimento & desenvolvimento , Firmicutes/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem Molecular , Oligossacarídeos/administração & dosagem , Oligossacarídeos/efeitos adversos , Prebióticos/administração & dosagem , Prebióticos/efeitos adversos , Análise de Componente Principal , Proteobactérias/classificação , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , Trissacarídeos/administração & dosagem , Trissacarídeos/efeitos adversos , Adulto Jovem
4.
Br J Nutr ; 114(1): 63-74, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25992463

RESUMO

Some lipid hydrolysis products such as medium-chained NEFA (MC-NEFA), sphingosine and monoacylglycerols (MAG) possess antibacterial activity, while others, including oleic acid, are essential for the optimal growth of Lactobacillus species. Thus, changes in the concentrations of NEFA and MAG in the distal ileum and colon can potentially selectively modulate the composition of the gut microbiota, especially in early life when lipid absorption efficacy is reduced. As medium-chained fatty acids are enriched in mothers' milk, such effects may be highly relevant during gut colonisation. In the present study, we examined the effect of selected NEFA, MAG and sphingosine on the composition of faecal microbial communities derived from infants aged 2-5 months during a 24 h anaerobic in vitro fermentation. We tested lipid mixtures in the concentration range of 0-200 µm, either based on MC-NEFA (10 : 0 to 14 : 0 and MAG 12 : 0) or long-chained NEFA (LC-NEFA; 16 : 0 to 18 : 1 and MAG 16 : 0) with and without sphingosine, representing lipid hydrolysis products characteristic for intestinal hydrolysis of breast milk lipids. Ion Torrent sequencing of the bacterial 16S ribosomal RNA gene revealed that the relative abundance of lactic acid-producing genera, including Lactobacillus and Bifidobacterium, was generally increased in the presence of 50 µm or higher concentrations of MC-NEFA. For Bifidobacterium, the same effect was also observed in the presence of a mixture containing LC-NEFA with sphingosine. On the contrary, the relative abundance of Enterobacteriaceae was significantly decreased in the presence of both lipid mixtures. Our findings suggest that the high concentration of medium-chained fatty acids in breast milk might have functional effects on the establishment of the gut microbiota in early life.


Assuntos
Ácidos Graxos não Esterificados/farmacologia , Fezes/microbiologia , Mucosa Intestinal/metabolismo , Microbiota , Monoglicerídeos/farmacologia , Esfingosina/farmacologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/genética , Bifidobacterium/crescimento & desenvolvimento , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/crescimento & desenvolvimento , Fermentação , Humanos , Hidrólise , Lactente , Lactobacillus/efeitos dos fármacos , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Leite Humano/química , RNA Ribossômico 16S/genética
5.
Food Funct ; 4(5): 784-93, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23580006

RESUMO

The present study aimed at examining oligosaccharides (OS) for potential stimulation of probiotic bacteria. Nineteen structurally well-defined candidate OS covering groups of ß-glucosides, α-glucosides and α-galactosides with degree of polymerization 2-4 were prepared in >100 mg amounts by chemoenzymatic synthesis (i.e. reverse phosphorolysis or transglycosylation). Fourteen of the OS are not naturally occurring and five (ß-D-glucosyl-fructose, ß-D-glucosyl-xylitol, α-glucosyl-(1,4)-D-mannose, α-glucosyl-(1,4)-D-xylose; α-glucosyl-(1,4)-L-fucose) have recently been synthesized for the first time. These OS have not been previously tested for effects of bacterial growth and here the ability of all 19 OS to support growth of four gastrointestinal bacteria: three probiotic bacteria Bifidobacterium lactis, Bifidobacterium longum, and Lactobacillus acidophilus, and one commensal bacterium, Bacteroides vulgatus has been evaluated in monocultures. The disaccharides ß-D-glucosyl-xylitol and ß-D-glucosyl-(1,4)-xylose noticeably stimulated growth yields of L. acidophilus NCFM, and additionally, ß-D-glucosyl-(1,4)-xylose stimulated B. longum Bl-05. α-Glucosyl-(1,4)-glucosamine and α-glucosyl-(1,4)-N-acetyl-glucosamine enhanced the growth rate of B. animalis subsp. lactis and B. longum Bl-05, whereas L. acidophilus NCFM and Bac. vulgatus did not grow on these OS. α-Galactosyl-(1,6)-α-galactosyl-(1,6)-glucose advanced the growth rate of B. animalis subsp. lactis and L. acidophilus NCFM. Thus several of the structurally well-defined OS supported growth of beneficial gut bacteria. This reflects a broad specificity of their sugar transporters for OS, including specificity for non-naturally occurring OS, hence showing promise for design of novel prebiotics.


Assuntos
Bacteroides/crescimento & desenvolvimento , Bifidobacterium/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Lactobacillus acidophilus/crescimento & desenvolvimento , Oligossacarídeos/química , Bacteroides/isolamento & purificação , Bifidobacterium/isolamento & purificação , Dissacarídeos/metabolismo , Humanos , Lactobacillus acidophilus/isolamento & purificação , Manose/metabolismo , Prebióticos/análise , Probióticos , Xilose/metabolismo
6.
FEMS Microbiol Lett ; 337(1): 38-47, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22967145

RESUMO

Alterations in the human gut microbiota caused, for example, by diet, functional foods, antibiotics, or occurring as a function of age are now known to be of relevance for host health. Therefore, there is a strong need for methods to detect such alterations in a rapid and comprehensive manner. In the present study, we developed and validated a high-throughput real-time quantitative PCR-based analysis platform, termed 'GUt Low-Density Array' (GULDA). The platform was designed for simultaneous analysis of the change in the abundance of 31 different microbial 16S rRNA gene targets in fecal samples obtained from individuals at various points in time. The target genes represent important phyla, genera, species, or other taxonomic groups within the five predominant bacterial phyla of the gut, Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia and also Euryarchaeota. To demonstrate the applicability of GULDA, analysis of fecal samples obtained from six healthy infants at both 9 and 18 months of age was performed and showed a significant increase over time of the relative abundance of bacteria belonging to Clostridial cluster IV (Clostridia leptum group) and Bifidobacterium bifidum and concurrent decrease in the abundance of Clostridium butyricum and a tendency for decrease in Enterobacteriaceae over the 9-month period.


Assuntos
Archaea/classificação , Bactérias/classificação , Biota , Trato Gastrointestinal/microbiologia , Análise em Microsséries/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Archaea/genética , Bactérias/genética , Ensaios de Triagem em Larga Escala , Humanos , Lactente , RNA Ribossômico 16S/genética
7.
J Agric Food Chem ; 59(12): 6511-9, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21574556

RESUMO

The side chains of the rhamnogalacturonan I fraction in sugar beet pectin are particularly rich in arabinan moieties, which may be substituted with feruloyl groups. In this work the arabinan-rich fraction resulting from sugar beet pulp based pectin production was separated by Amberlite XAD hydrophobic interaction and membrane separation into four fractions based on feruloyl substitution and arabino-oligosaccharide chain length: short-chain (DP 2-10) and long-chain (DP 7-14) feruloylated and nonferuloylated arabino-oligosaccharides, respectively. HPAEC, SEC, and MALDI-TOF/TOF analyses of the fractions confirmed the presence of singly and doubly substituted feruloylated arabino-oligosaccharides in the feruloyl-substituted fractions. In vitro microbial fermentation by human fecal samples (n = 6 healthy human volunteers) showed a selective stimulation of bifidobacteria by both the feruloylated and the nonferuloylated long-chain arabino-oligosaccharides to the same extent as the prebiotic fructo-oligosaccharides control. None of the fractions stimulated the growth of the potential pathogen Clostridium difficile in monocultures. This work provides a first report on the separation of potentially bioactive feruloylated arabino-oligosaccharides from sugar beet pulp and an initial indication of the potentially larger bifidogenic effect of relatively long-chain arabino-oligosaccharides as opposed to short-chain arabino-oligosaccharides.


Assuntos
Beta vulgaris/química , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Fezes/microbiologia , Intestinos/microbiologia , Oligossacarídeos/metabolismo , Pectinas/química , Extratos Vegetais/metabolismo , Arabinose/química , Arabinose/metabolismo , Fermentação , Humanos , Mucosa Intestinal/metabolismo , Modelos Biológicos , Estrutura Molecular , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Pectinas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Prebióticos/análise
8.
Appl Microbiol Biotechnol ; 90(3): 873-84, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21253720

RESUMO

Potato pulp is a poorly utilized, high-volume co-processing product resulting from industrial potato starch manufacturing. Potato pulp mainly consists of the tuber plant cell wall material and is particularly rich in pectin, notably galactan branched rhamnogalacturonan I type pectin which has previously been shown to exhibit promising properties as dietary fiber. The objective of this study was to solubilize dietary fibers from potato pulp by a one-step minimal treatment procedure and evaluate the prebiotic potential of the fibers. Statistically designed experiments were conducted to investigate the influence of enzyme type, dosage, substrate level, incubation time, and temperature on the enzyme catalyzed solubilization to define the optimal minimal enzyme treatment for maximal fiber solubilization. The result was a method that within 1 min released 75% [weight/weight (w/w)] dry matter from 1% (w/w) potato pulp treated with 1.0% (w/w) [enzyme/substrate (E/S)] pectin lyase from Aspergillus nidulans and 1.0% (w/w) E/S polygalacturonase from Aspergillus aculeatus at pH 6.0 and 60 °C. Molecular size fractionation of the solubilized fibers revealed two major fractions: one fraction rich in galacturonic acid of 10-100 kDa indicating mainly homogalacturonan, and a fraction >100 kDa rich in galactose, presumably mainly made up of ß-1,4-galactan chains of rhamnogalacturonan I. When fermented in vitro by microbial communities derived from fecal samples from three healthy human volunteers, both of the solubilized fiber fractions were more bifidogenic than fructo-oligosaccharides (FOS). Notably the fibers having molecular masses of >100 kDa selectively increased the densities of Bifidobacterium spp. and Lactobacillus spp. 2-3 times more than FOS.


Assuntos
Aspergillus/enzimologia , Biotecnologia/métodos , Fibras na Dieta/análise , Proteínas Fúngicas/química , Resíduos Industriais/análise , Poligalacturonase/química , Polissacarídeo-Liases/química , Solanum tuberosum/química , Adulto , Fibras na Dieta/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pectinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...